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Abstract - This paper presents a coupled, joint

probabilistic data association (JPDA) algorithm for

multi-target tracking using a modified version of the

standard measurement-to-track assignment model.

The mutually exclusive nature of standard JPDA

association events precludes any measurement be-

ing associated with more than one target in a given

event. This constraint is relaxed here to allow a mea-

surement to be assigned to multiple targets. All other

JPDA assumptions are retained (i.e., no measure-

ment can be simultaneously associated with target

and clutter, and each track can claim at most one

measurement). The computational requirements of

the resulting algorithm grow linearly with the num-

ber of tracks. The recursive estimators for the cou-

pled track means and covariance are derived and pre-

sented.

Keywords: Multi-target tracking, probabilistic data as-

sociation, estimation

1 Introduction

The joint probabilistic data association (JPDA) al-
gorithm [1–4] for multi-target tracking in clutter has
many desirable properties. Prominent among these
properties is the fact that the track estimates are ob-
tained from the posterior distribution of the states,
thereby providing a more realistic assessment of the
uncertainty in the multi-target tracking problem. The
single target version, the probabilistic data associa-
tion filter (PDAF) [5], is a consistent estimator [2, 3, 6]
that works well in many different applications. In fact,
PDAF is regarded by many to be the baseline for track-
ing a target in clutter.

The primary drawback of JPDA is the explosive
growth in association events that must be considered
as the number of targets and detected measurements
increase to even moderate levels (≈ 10). Approxima-
tions to JPDA that avoid this explosive growth are
discussed in references [7–11]. This paper presents a

modified JPDA algorithm whose number of association
events grow linearly with the number of targets, as op-
posed to the exponential growth in JPDA. Recently, a
new linear complexity multi-target tracking algorithm
based on the integrated probabilistic data association
algorithm (IPDA) [12] and joint IPDA (JIPDA) [13]
was described in references [14–16]. The algorithm in
[14–16] is fundamentally different from the algorithm
presented here because the assignment assumptions are
different. Performance comparisons between the two
algorithms are currently being initiated and will be
presented at a later time.

The modified JPDA algorithm is developed in the
next several sections. The assignment model is pre-
sented in Sec. 2. The filtering algorithm that results
from this assignment model is discussed at a high level
of abstraction in Sec. 3, and these results are special-
ized to linear Gaussian targets and uniform clutter in
Sec. 4. An example containing two crossing targets is
then examined in Sec. 5, followed by a short summary
and conclusions in Sec. 6.

2 Assignment Model

In the following derivation and discussion, targets are
assumed to be close enough together so that a multi-
target tracking procedure is required (e.g. the target
gates overlap). For widely separated targets or a sin-
gle target in clutter, the PDAF is employed. For the
closely spaced targets, the JPDA algorithm is applied,
but with a relaxed set of assignment assumptions. In
particular, whereas JPDA does not permit a measure-
ment to be associated with multiple targets in a sin-
gle event, the new model allows measurements to be
assigned to multiple targets (but not target and clut-
ter) by assuming that the measurement-to-track as-
signments are statistically independent between tar-
gets. A mutually exclusive and exhaustive set of as-
sociation events is considered for each target.

To establish notation, the event in which the kth
measurement is assigned to the jth target track dur-
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ing the nth scan interval, and in which all other mea-
surements are assigned to clutter, is denoted by θjkn.
The vector θjn represents the collection of association
events for the jth target track. Consequently,

θjn =
Kn⋃
k=0

θjkn (1)

where θjkn

⋂
θjln = ∅ for all k �= l,

Prob
{
θikn

⋂
θjln

}
= Prob {θikn}Prob {θjln} (2)

for i �= j and Kn represents the number of measure-
ments in scan n. The association events for each tar-
get make no explicit allowance for the existence of
other targets (unlike the methods described in [14–16]).
Multi-target behavior arises due to the mixing that re-
sults from the independence of the between-target as-
sociation events.

The measurements

Zn = {zkn}Kn

k=1 (3)

(Kn ≥ 0) in scan n are statistically independent when
conditioned on the target states, xjn (for j = 1, . . . , J),
and the association events, θjn. Furthermore, the tar-
get states are independent of the association events.
Stacking the state vectors from all targets into a single
vector defines the combined state vector

Xn =
[
xT

1n, . . . ,x
T
Jn

]T
(4)

whose evolution from scan to scan is governed by a set
of independent first order Markov processes, such that

p(Xn|Xn−1) =
J∏

j=1

p(xjn|xjn−1). (5)

Here, J denotes the number of targets in the obser-
vation space with overlapping target gates. While
the measurements are conditionally independent when
given the combined state vector, the individual target
state estimates are not necessarily independent when
target gates overlap. Dependent target state estimates
are said to be coupled, and they are estimated jointly
[3].

The posterior event probabilities for the modified al-
gorithm are obtained via the usual application of Bayes
theorem. The measurement likelihood for event θjkn,
in which the kth measurement goes to the jth target,
is given by

p(Zn|xjn, θjkn, j) = p(zkn|xjn)
Kn∏
r=1
r �=k

pc(zrn) (6)

where pc(·) denotes the likelihood of a clutter mea-
surement. For the event that assigns all measurements
to clutter (i.e., k = 0), the measurement likelihood is
given by

p(Zn|θj0n, j) =
Kn∏
k=1

pc(zkn). (7)

The joint likelihood of the measurements conditioned
on the state for target j is obtained by marginalizing
over the association events for target j to obtain

p(Zn|xjn, j) =
Kn∑
k=0

p(Zn|xjn, θjkn, j) Prob {θjkn} .
(8)

This expression is the conditional measurement likeli-
hood for the (single-target) PDAF. Similarly, the like-
lihood of the measurements in scan n, conditioned on
all the target states, is obtained by marginalizing over
the targets as

p(Zn|Xn) =
J∑

j=1

Prob {j} p(Zn|xjn, j) (9)

where Prob {j} represents the prior probability of tar-
get j.

3 Posterior Estimates

The estimates of the target states that minimize the
posterior mean square error and the corresponding co-
variance matrices at each scan are obtained by tak-
ing expectations with respect to the conditional target
state densities. The process of computing these expec-
tations is broken into two steps consisting of a time
update and a measurement update as described in [17]
and [18]. Just enough of the theory is repeated in this
section to introduce needed notation.

The starting point for developing state estimators is
the joint likelihood function

p(Zn,Xn,Xn−1|Zn−1)

= p(Zn|Xn) p(Xn,Xn−1|Zn−1)

= p(Zn|Xn) p(Xn|Xn−1) p(Xn−1|Zn−1) (10)

where Zn−1 represents the collection of all the mea-
surements from the starting scan through and includ-
ing scan n− 1. Given the (prior) PDF of the previous
state estimates, p(Xn−1|Zn−1), the time update forms

p(Xn|Zn−1) =
∫
dXn−1 p(Xn,Xn−1|Zn−1). (11)



The measurement update applies Bayes rule to obtain

p(Xn|Zn) = p(Xn|Zn,Zn−1)

=
p(Zn|Xn)p(Xn|Zn−1)

p(Zn|Zn−1)
. (12)

The denominator term p(Zn|Zn−1) is the combined in-
novation likelihood:

p(Zn|Zn−1) =
∫
dXn p(Zn,Xn|Zn−1). (13)

In practical applications, p(Zn|Zn−1) is based on a
truncated density function such that only measure-
ments near the predicted target measurement are con-
sidered by the algorithm. This procedure is referred to
as gating or measurement validation [2–4, 19].

Given the posterior state density, the state is esti-
mated as

X̂n|n =
∫
dXn Xn p(Xn|Zn). (14)

Defining the outer-product function g(X) = XXT,
the posterior covariance matrix of the combined tar-
get state vector is given by

Pn|n =
∫
dXn g(Xn − X̂n|n) p(Xn|Zn). (15)

4 Linear Gaussian Targets in
Poisson Clutter

This section develops the time and measurement up-
dates for linear-Gaussian targets and Poisson clutter.
Target measurements are detected with a probability
of Pd, and clutter measurements are uniformly distrib-
uted in the observation space. The modified JPDA
algorithm considers an observation space that is the
union of the overlapping target gates. Denoting by V
the volume in the union of the gates, the clutter density
in this observation region is

pc(zkn) = V−1. (16)

The number of clutter measurements is modeled by a
Poisson distribution with parameter λV, where λ is
the average number per unit volume (spatial density).
The number of measurements, Kn, in a scan is equal to
the sum of the number of target measurements and the
number of clutter measurements which are statistically
independent.

The number of target measurements in any given
scan is between zero (no target produces a measure-
ment) and J (all targets produce a measurement) and
has a binomial distribution with parameter Pd. The

distribution of Kn is obtained by convolving the bi-
nomial distribution for the number of target measure-
ments with the Poisson distribution for the number of
clutter measurements, which gives

Prob {Kn} =

e−λV
J′∑

l=0

(
J ′

l

)
P l

d(1 − Pd)J′−l (λV )Kn−l

(Kn − l)!
(17)

where J ′ = min(Kn, J). Using Eq. (17), and following
the derivation in Appendix D.4 in [2], the prior prob-
ability for the event in which the kth measurement is
assigned to the jth target (and all other measurements
to clutter) is given by

Prob {θjkn} =

Prob {Kn}−1

{
f1(Kn)/Kn for 1 ≤ k ≤ Kn

f0(Kn) for k = 0

(18)

where

f1(Kn) =

e−λV
J′∑

l=1

(
J ′

l

)
P l

d(1 − Pd)J′−l (λV )Kn−l

(Kn − l)!
(19)

and

f0(Kn) = e−λV (1 − Pd)J′ (λV )Kn

Kn!
. (20)

When only one target is present Eq. (18) reduces to the
event prior probability given for the PDAF in [2, 3].

The posterior event probabilities are obtained by
including the appropriate innovation likelihood terms.
Under linear Gaussian assumptions, the likelihood of
a target measurement equals

p(zkn|xjn) = N (zkn;Bjnxjn,Rjn)

= N
(
zkn; B̃jnXn,Rjn

)
(21)

where N (x;µ, σ) denotes the Gaussian density with
mean µ and covariance σ and

B̃jn = [0 · · · 0 Bjn 0 · · · 0] . (22)

The density function for a target’s current state, given
the previous state, is defined as

p(xjn|xjn−1) = N (
xjn;Ajnxjn−1,Qjn

)
. (23)

The joint density of all target states at scan n, condi-
tioned on all the data up to and including scan n, is
also Gaussian and is given by

p(Xn|Zn) = N
(
Xn; X̂n|n,Pn|n

)
. (24)

Because the covariance matrix Pn|n is not block diag-
onal (as will be shown subsequently) the target state
estimates are coupled.



4.1 Time Update

For linear Gaussian targets, Eq. (5) is equivalent to

p(Xn|Xn−1) = N (Xn;AnXn−1,Qn) (25)

where An = diag {Ajn} is the block diagonal ma-
trix of the target state-feedback matrices and Qn =
diag

{
Qjn

}
. The time update therefore amounts

to marginalizing the previous state from the joint
Gaussian density

p(Xn,Xn−1|Zn−1)

= p(Xn|Xn−1) p(Xn−1|Zn−1)

= N (Xn;AnXn−1,Qn)

× N
(
Xn−1; X̂n−1|n−1,Pn−1|n−1

)
. (26)

For this type of Gaussian product, the dependency re-
versal from Bayes theorem is easily achieved by apply-
ing the Gaussian refactorization lemma (GRL) [20],
which directly yields the expression

p(Xn,Xn−1|Zn−1)

= p(Xn|Zn−1) p(Xn−1|Xn,Zn−1)

= N
(
Xn; X̂n|n−1,Pn|n−1

)
N (Xn−1;Un,Λn)

(27)

where

X̂n|n−1 = An X̂n−1|n−1 (28)

Pn|n−1 = Qn + An Pn−1|n−1 AT
n (29)

Un = Wn X̂n−1|n−1 + Hn Xn (30)

Λn = Wn Pn−1|n−1 (31)

Wn = I− Hn An (32)

and

Hn = Pn−1|n−1 AT
n P−1

n|n−1. (33)

With this dependency reversal, integrating the right
side of Eq. (27) with respect to Xn−1 is trivial, giving

p(Xn|Zn−1) = N
(
Xn; X̂n|n−1,Pn|n−1

)
(34)

which is the familiar predicted state density. Since the
covariance matrix, Pn|n−1, of the combined state es-
timate X̂n|n−1 is not, in general, block diagonal, the
predicted target state densities are not statistically in-
dependent.

4.2 Innovation Likelihood

The fact that the predicted target states are coupled
complicates the derivation of p(Zn|Zn−1) to some de-
gree. To address this problem, the combined state out-
put matrix B̃jn was introduced in Eq. (21). By using
B̃jnXn instead of Bjnxjn, the GRL can be applied di-
rectly to (34) such that marginalization with respect
to the combined target state is straightforward.

Since the clutter terms in Eq. (6) do not de-
pend on the state vector for target j, the product
p(Zn|xjn, θjkn) p(Xn|Zn−1) is marginalized by apply-
ing the GRL to the two Gaussian components, inte-
grating Xn from the result, and then multiplying by
the clutter terms after the fact. The Gaussian compo-
nents are re-factorized as

N
(
zkn; B̃jnXn,Rjn

)
N
(
Xn; X̂n|n−1,Pn|n−1

)
= N (zkn; ẑjn,Sjn)N (

Xn;Xjk,n|n,Pjk,n|n
)

(35)

where

ẑjn = B̃jn X̂n|n−1 (36)

Sjn = Rjn + B̃jn Pn|n−1 B̃
T

jn (37)

Xjk,n|n = Djn X̂n|n−1 + Gjn zkn (38)

Pjk,n|n = Djn Pn|n−1 (39)

Djn = I − Gjn B̃jn (40)

and
Gjn = Pn|n−1 B̃

T

jn S−1
jn . (41)

Integrating Eq. (35) with respect to Xn gives

p(zkn|ẑjn) =
∫
dXn p(zkn|xjn) p(Xn|X̂n|n−1)

= N (zkn; ẑjn,Sjn) . (42)

Inclusion of the clutter terms then gives conditional
likelihood as

p(Zn|θjkn,Zn−1) = V1−Kn N (zkn; ẑjn,Sjn) (43)

for 1 ≤ k ≤ Kn. For k = 0, where all measurements
are presumed to be clutter, this expression reduces to

p(Zn|θ0kn,Zn−1) = V−Kn . (44)

The overall innovation likelihood is obtained by nested
application of the total probability theorem as

p(Zn|Zn−1) =
J∑

j=1

Prob { j}

×
Kn∑
k=0

Prob {θjkn} p(Zn|θjkn,Zn−1). (45)



4.3 Measurement Update

Substituting equations (34) and (45) into Eq. (12)
yields the posterior density of the combined target
state as

p(Xn|Zn−1) =
p(Zn|Xn) N

(
Xn; X̂n|n−1,Pn|n−1

)
p(Zn|Zn−1)

.

(46)
The state estimates are obtained by taking expecta-
tions with respect to this conditional density. In com-
puting the conditional mean, there are two types of
expectations that need to be evaluated. For each
measurement-to-target association hypothesis, the ex-
pected value of Xn is given by

Xjk,n|n = p(Zn|Zn−1)−1

×
∫
dXn Xn p(Zn|xjn, θjkn) p(Xn|X̂n|n−1). (47)

where Xj0,n|n = X̂n|n−1. The posterior mean of the
combined target state is therefore

X̂n|n =
J∑

j=1

Kn∑
k=0

ψjkn Xjk,n|n

= X̂n|n−1 +
J∑

j=1

Gjn

Kn∑
k=1

ψjkn (znk − ẑjn) (48)

where

ψjkn =
Prob {j} Prob {θjkn} p(Zn|θjkn,Zn−1)

p(Zn|Zn−1)
. (49)

The combined state covariance is obtained following
similar developments. Recalling the definition g(X) =
XXT and noting that

g
(
Xn−X̂n|n

)
= g
(
Xn−Xjk,n|n+Xjk,n|n−X̂n|n

)
the covariance matrix for each measurement-to-target
association event is defined by

Pjk,n|n + g
(
Xjk,n|n − X̂n|n

)
= p(Zn|Zn−1)−1

∫
dXn g

(
Xn − X̂n|n

)
× p(Zn|xjn, θjkn) p(Xn|X̂n|n−1). (50)

where Pj0,n|n = Pn|n−1. Combining terms then yields

Pn|n =
J∑

j=1

Kn∑
k=0

ψjkn

[
Pjk,n|n + g

(
Xjk,n|n − X̂n|n

)]
. (51)

Finally, substituting Eqs. (39)–(41) for Pn|n and sim-
plifying gives

Pn|n = (I− Gn)Pn|n−1

+
J∑

j=1

Kn∑
k=0

ψjkn g
(
Xjk,n|n − X̂n|n

)
(52)

where

Gn =
J∑

j=1

(
Kn∑
k=1

ψjkn

)
Gjn B̃jn. (53)

An alternative method of computing X̂n|n and Pn|n
is obtained by breaking equations (48) and (52) into
two convex sums instead of one. The first convex sum
is over measurements and is essentially a PDAF step.
The second convex sum mixes the PDAF estimates.
Approximating the weights used in this mixing be-
tween tracks (second convex sum) by the prior target
probabilities yields a far more stable algorithm. To
begin the PDAF step, let

βjn =
Kn∑
k=0

p(Zn|θjkn,Zn−1) Prob {θjkn} (54)

and

βjkn = β−1
jn p(Zn|θjkn,Zn−1) Prob {θjkn} . (55)

Then, the contribution to the combined state vector
from target j equals

X̂j,n|n =
Kn∑
k=0

βjknXjk,n|n

= X̂n|n−1 +Gjn

Kn∑
k=1

βjkn

(
zkn − ẑn|n−1

)
(56)

which is the same as the PDAF’s target state estimate
except that, in this case, it is the contribution of target
j to the combined state vector. To compute Pn|n, the
average distances from Xjk,n|n to Xj,n|n and Xj,n|n to
Xn|n−1 are required:

Yj,n|n =
Kn∑
k=1

βjkn

(
Xjk,n|n − X̂j,n|n

)
(57)

and
Yj,n|n−1 = βj0n

(
X̂j,n|n − X̂n|n−1

)
. (58)

The covariance contribution from target j is given by

Pj,n|n = βj0n

[
Pn|n−1 + g

(
X̂n|n−1 − X̂j,n|n

)]

+
Kn∑
k=1

βjkn

[
Pjk,n|n + g

(
Xjk,n|n − X̂j,n|n

)]
(59)



which is the same form as the PDAF covariance esti-
mate.

To form the single combined state estimate and co-
variance, we introduce the posterior probability of tar-
get j, given by

ωjn =
Prob {j} βjn

p(Zn|Zn−1)
(60)

and observe that

J∑
j=1

ωjn = 1. (61)

Because ωjn is the posterior probability of target j,
and because p(Zn|Zn−1) is the average value of the
βjn’s (see equations (45) and (54)), it follows that

ωjn ≈ Prob {j} . (62)

Using this approximation for ωjn yields more stable
estimates because it prevents one or more targets from
dominating the mixing across targets, which can cause
the covariance estimates for the remaining targets to
blow up over time.

Using Eq. (56), the estimate of the combined target
state vector from Eq. (48) is given by

X̂n|n =
J∑

j=1

ωjnX̂j,n|n. (63)

Similarly, Eq. (52) now may be expressed as

Pn|n =
J∑

j=1

ωjn

[
Pj,n|n + g

(
X̂j,n|n − X̂n|n

)

+ Yj,n|n
(
X̂j,n|n − X̂n|n

)T

+
(
X̂j,n|n − X̂n|n

)
YT

j,n|n

+ Yj,n|n−1

(
X̂j,n|n − X̂n|n

)T

+
(
X̂j,n|n − X̂n|n

)
YT

j,n|n−1.

]
(64)

5 Example

A two target crossing scenario was used to compare the
performance of the Modified JPDA algorithm against
single target PDAF and a multiple target JPDA. Per-
formance criteria include the number of lost tracks, the
Normalized Estimation Error Squared (NEES), posi-
tional error, and algorithm complexity. A lost track is
defined as any track whose NEES value exceeds twenty
during any update. One thousand Monte Carlo trials
were used to generate the results. The scenario pa-
rameters used for the simulation are given in table 1,

Update Rate 1 Sec
Number of Updates 65
Target 1 Course 88 Deg
Target 2 Course 92 Deg
Target 1 Init Pos (0, 1200) m
Target 2 Init Pos (0, 2000 )m
Target 1 Speed 500 m/s
Target 2 Speed 500 m/s
Process Noise Sigma 0.01
Measurement Noise Sigma 75
λ 1 per km2

Pd 0.99
PG 0.99

Table 1: Crossing tracks scenario parameters
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Figure 1: Sample scenario run with MJPDA results
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Figure 2: RMS positional error curves for PDAF,
JPDA and MJPDA



Alg. % Lost NEES Rel. Pos. Complexity
Tracks Error

PDAF 18.8 Consistent 1 Linear
JPDA 8.0 Consistent 1 Exponential

MJPDA 13.0 Mostly consistent 3 Linear

Table 2: Performance summary
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Figure 3: NEES curves for PDAF, JPDA and MJPDA

and an example showing results for MJPDA appears
in figure 1. The results from the runs are summarized
in table 2 and figures 2 and 3.

This example indicates that the modified JPDA al-
gorithm’s lost track performance is better than that of
independent PDAFs, but is degraded relative to JPDA.
Furthermore, its covariance estimates are too large
during the cross, making the NEES measure too small
in that region, and the position errors are larger than
PDAF and JPDA. The degraded performance charac-
teristics are believed to result from splitting all the
measurements in the union of two intersecting gates
between the two targets. As a result, the measure-
ments have a reduced impact on the updates to the
target states in Eqs. (48) and (63) and the target state
covariance matrices in Eqs. (52) and (64). The pre-
dicted state and covariance are therefore more influ-
ential, causing the state covariance to grow too large,
which, in turn, causes the NEES plot for MJPDA to
fall below the lower threshold in figure 3. This prob-
lem may be addressed by splitting between targets only
those measurements that fall within the intersection
(as opposed to the union) of the target gates. An in-
vestigation of that approach is ongoing.

6 Summary

This paper presents a modified, coupled JPDA algo-
rithm that achieves linear computational complexity
by relaxing the requirement that a measurement can
only be assigned to one target. Instead, this new algo-
rithm assumes that the measurement to target assign-
ment events for target are statistically independent, al-
lowing a given measurement to be assigned to multiple
targets. In this single target case, the new algorithm
reduces to the PDAF.

The intent of this work is to develop a consistent
estimator whose performance is near to that of JPDA
but whose computational growth is linear in the num-
ber of targets and measurements (instead of exponen-
tial). Future work will include an examination of the
MJPDA algorithm in which only those measurements
in the intersection of gates is split between targets (as
discussed in the previous section) and a performance
comparison between MJPDA and the IPDA-based al-
gorithm [14–16].
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